CHP systems optimal allocation in the interconnected heat and electricity distribution network based on minimizing electrical and heat transfer losses

نویسندگان

چکیده

Combined heat and power (CHP) systems are employed to supply electrical thermal loads of distribution networks (DNs). However, the loss can significantly hinder transfer through pipelines from CHP consumers Therefore, optimal placement sizing reduce losses, including very crucial. To minimize loss, many methods have been proposed for resource allocation. In this paper, a new approach allocation (HTL) is presented. Accurate modeling HTL pipeline performed. The method applied 33-bus, 69-bus, 84-bus test systems. According simulation results, it concluded that considering in resources optimization problem leads major changes selection systems' size location. solve problem, enhanced imperialist competitive algorithm (E-ICA) enhances performance efficiency ICA by improving exploitation exploration prevent getting trapped local optimums. Comparison results confirms superiority E-ICA over other methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Operation of CHP Combined Heat Generation Systems Using the Crow Search Optimization Algorithm

Energy efficiency of power plants is less than 60% However, the efficiency of the CHP units can be up to 90 %.CHP units in addition to high efficiency, They reduce environmental pollutants by 13 to 18 percent. The purpose of this thesis is to use the simultaneous power and power generation plants to reach the optimal economic destination for Genco And to maximize economic profit And to minimize...

متن کامل

Experimental Investigation on CuO/Water Nanofluid Effect on the Heat Transfer Rate of Heat Pipe Network

In this study, a new configuration of heat pipes as Heat Pipe Network is introduced. Here, the heat pipe network is designed, constructed and then has been under the performance assessment. This heat pipe network consists of 4 vertical heat pipes connected to evaporator collector from bottom and condenser collector from top. In order to investigate the effect of nanofluids on the thermal effici...

متن کامل

Optimal Heat Exchanger Network Synthesis Including Heat Transfer Equipment Design

This paper presents an optimisation model for the synthesis of heat exchanger networks (HEN) including the detailed design of the equipments formulated as a decomposition method. Shell and tube pressure drops and fouling are considered, as well as mechanical aspects, like shell and tube bundle diameters, internal and external diameter of tubes, number of tubes, number of baffles, number of shel...

متن کامل

Mixed convection fluid flow and heat transfer and optimal distribution of discrete heat sources location in a cavity filled with nanofluid

Mixed convection fluid flow and heat transfer of water-Al2O3 nanofluid inside a lid-driven square cavity has been examined numerically in order to find the optimal distribution of discrete heat sources on the wall of a cavity. The effects of different heat source length, Richardson number and Grashof number on optimal heat source location has been investigated. Moreover, the average Nusselt num...

متن کامل

Water thickness effect on the fin efficiency and heat transfer for partially wet-surface heat exchanger

Heat and mass transfer, in this paper, is considered in one-row heat exchanger, that fins are hotter than air flow and water is added to fins. Related governing equations are derived by analyzing a two-dimension model in a unique cell of a heat exchange. These equations are numerically solved by finite difference method. Heat transfer and efficiency under partially wet surface are calculated by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Iet Generation Transmission & Distribution

سال: 2022

ISSN: ['1751-8687', '1751-8695']

DOI: https://doi.org/10.1049/gtd2.12484